
ARTICLE IN PRESS
JOURNAL OF
SOUND AND
VIBRATION
0022-460X/$ - s

doi:10.1016/j.js

�Correspond
E-mail addr
Journal of Sound and Vibration 319 (2009) 993–1002

www.elsevier.com/locate/jsvi
Spectral element modeling for extended Timoshenko beams

Usik Lee�, Changho Lee

Department of Mechanical Engineering, Inha University, 253 Yonghyun-Dong, Nam-Gu, Incheon 402-751, Republic of Korea

Received 4 July 2007; received in revised form 23 June 2008; accepted 29 June 2008

Handling Editor: L.G. Tham

Available online 6 August 2008
Abstract

Periodic lattice structures such as the large space lattice structures and carbon nanotubes may take the extension-

transverse shear-bending coupled vibrations, which can be well represented by the extended Timoshenko beam theory. In

this paper, the spectrally formulated finite element model (simply, spectral element model) has been developed for extended

Timoshenko beams and applied to some typical periodic lattice structures such as the armchair carbon nanotube, the

periodic plane truss, and the periodic space lattice beam.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

In structural mechanics, the shear deformation may become important when a beam theory is applied to the
beam-like lattice structures and the couplings between axial, transverse shear and bending deformations may
exist when a beam-like structure is not perfectly axisymmetric along its central axis (Ref. [1]). The typical
examples of such beam-like lattice structures are the beam-like space lattice structures and carbon nanotubes
(CNTs). The classical Timoshenko beam theory is an extension of the Euler–Bernoulli beam theory to allow
for the effects of transverse shear deformation and rotary inertia, while the extended Timoshenko beam (ETB)
theory is the extension of the classical Timoshenko beam theory to take into account the couplings between
axial, transverse shear and bending deformations (Ref. [2]). Thus the ETB theory is appropriate for the
dynamic analysis of beam-like lattice structures.

The finite element method (FEM) is obviously a very powerful solution method which is versatile for
diverse, complex engineering problems. However, as the classic finite elements are formulated by using
frequency-independent simple polynomials as the interpolation functions, it is often inevitable to use
extremely fine meshes to improve the accuracy of FEM solutions, especially at high frequency, which may
increase the computation cost drastically, possibly with degrading the accuracy of FEM solutions. Such
problems may be resolved by using frequency-dependent interpolation functions, instead of the simple
polynomials, to formulate finite element models: this frequency-domain modeling method is called the spectral
element method (SEM) in the literature (Ref. [3,4]). In SEM, the wave solutions satisfying governing equations
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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exactly in the frequency-domain are normally used as the frequency-dependent interpolation functions. Due to
its intrinsic nature, SEM will provide exact frequency-domain solutions (i.e., Fourier components of dynamic
responses) by using only one element for a structure of any length in the absence of any discontinuity or
irregularity in geometrical and material properties, which may reduce the total degrees of freedom (dofs) to
lower the computation cost and time. Thus, SEM is often referred to as an exact solution method (Ref. [5]). In
SEM, the inverse fast Fourier transform (FFT) (Ref. [6]) is used to efficiently reconstruct the time history of
the response from its Fourier components.

In the literature, spectral element models have been developed for various beam structures such as the
Timoshenko beams (e.g., Ref. [7]), bending-torsion coupled beams (e.g., Ref. [8]), extension-torsion coupled
beams (e.g., Ref. [9]), curved beams (e.g., Ref. [10]), twisted helix beams or springs (e.g., Ref. [11]), composite
beams (e.g., Ref. [12]), active constraining layer damping treated beams (e.g., Ref. [13]), functionally graded
beams (e.g., Ref. [14]), tapered beams (e.g., Ref. [15]), and so forth. To the author’s best knowledge, the
spectral element model for the extended Timoshenko beams (ETBs) has not been introduced in the literature.

Thus, the purposes of this paper are: (1) to develop a spectral element model for ETBs which take the
extension-transverse shear-bending coupled in-plane vibrations and (2) to apply it to the beam-like lattice
structures which can be homogenized as the continuum ETB models.

2. Equations of motion

The in-plane motion of an ETB is represented by (Ref. [2])
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where the prime (0) denotes the derivative with respective to the spatial coordinate, say x. T, Q, and M are the
axial tensile force, transverse shear force, and bending moment, respectively; and u, w, and y are the axial
displacement, transverse displacement, and slope, respectively. rA, rR, and rI are the effective mass per
length, the first-order moment of inertia, and second-order moment of inertia defined by

rA ¼

Z
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Z
rzdA; rI ¼

Z
rz2 dA (2)

where r is the mass density per unit volume. The force–displacement relation is given by (Ref. [2])
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where C1, C2, and C3 are the coupling rigidities which represent the couplings between the axial, transverse
shear, and bending deformations. When all of rR, C1, C2, and C3 vanish, decoupled equations of motion for
the classical Timoshenko beam and axial bar are recovered.

The ETB theory represented by Eq. (1) can be applied to the homogenized beam models of the one-
dimensional-like periodic lattice structures whose cross-sections are symmetric with respect to the vertical axis
(z-axis) so that they take the extension-transverse shear-bending coupled in-plane vibration in the x–z plane,
without taking the torsional motion about the elastic axis (x-axis), as shown in Fig. 1.
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Fig. 1. The coordinates system for the extended Timoshenko beam.
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3. Spectral element formulation

To formulate the spectral element of ETB, based on the discrete Fourier transform (DFT) theory (Ref. [6]),
we assume the displacement fields in the spectral forms as

uðx; tÞ ¼
XN�1
n¼0

ūnðxÞ e
iont

wðx; tÞ ¼
XN�1
n¼0

w̄nðxÞ e
iont

yðx; tÞ ¼
XN�1
n¼0

ȳnðxÞ e
iont (4)

where ūn; w̄n; and ȳn (n ¼ 0; 1; 2; . . . ;N � 1) are the Fourier components of u(x, t), w(x, t), and y(x, t),
respectively, all corresponding to discrete frequencies defined by on ¼ 2pn/T. The time window (period) T is
related to the number of samples N by N ¼ 2fNYQT, where fNYQ is the Nyquist frequency. Similarly we
represent the axial tensile force T(x, t), transverse shear force Q(x, t), and bending moment M(x, t) in the
spectral forms as
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To shorthand, the subscript n, which indicates the nth Fourier component, will be omitted in the following
derivations.

Substitution of Eqs. (4) and (5) into Eqs. (1) and (3) gives
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By substituting Eq. (7) into Eq. (6), one can derive the governing equations as
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Assume the general solutions of Eq. (8) as

ūðxÞ ¼ aW e�ikx; w̄ðxÞ ¼We�ikx; ȳðxÞ ¼ bW e�ikx (9)

where k is the wavenumber. Substitution of Eq. (9) into Eq. (8) gives
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where
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From Eq. (10), one can obtain the dispersion equation as
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We can obtain six roots (i.e., wavenumbers) from Eq. (12) as
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From Eq. (10), a and b are determined as
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Fig. 2. Sign conventions defined for (a) the spectral element modeling and (b) the mechanics of materials.
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where

D ¼ ð�iC2
1 þ C1C2k þ iEAGA� C3EAkÞk3

þ ð�iGArAþ C3krA� C1krRÞo2k (17)

By using the six wavenumbers computed from Eq. (14), we can express the general solutions in the forms as

ūðxÞ ¼ a1W 1 e
�ik1x þ a2W 2 e

�ik2x þ a3W 3 e
�ik3x þ a4W 4 e

�ik4x þ a5W 5 e
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w̄ðxÞ ¼W 1 e
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�ik2x þ b3W 3 e
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(18)

or, in the simple forms as

ūðxÞ ¼ UðxÞ½diagðajÞ�W

w̄ðxÞ ¼ UðxÞW ðj ¼ 1; 2; 3; 4; 5; 6Þ

ȳðxÞ ¼ UðxÞ½diagðbjÞ�W

(19)

where

UðxÞ ¼ ½ e�ik1x e�ik2x e�ik3x e�ik4x e�ik5x e�ik6x �

W ¼ fW 1 W 2 W 3 W 4 W 5 W 6 g
T

aj ¼ aðkjÞ; bj ¼ bðkjÞ (20)

The Fourier components of the dof and the nodal forces and moments, shown in Fig. 2, are defined by

d ¼ fU1 W 1 Y1 U2 W 2 Y2 g
T

¼ f ūð0Þ w̄ð0Þ ȳð0Þ ūðLÞ w̄ðLÞ ȳðLÞ gT (21)

f ¼ fT1 Q1 M1 T2 Q2 M2 gT

¼ f�T̄ð0Þ �Q̄ð0Þ �M̄ð0Þ T̄ðLÞ Q̄ðLÞ M̄ðLÞ gT (22)

Substitution of Eq. (19) into Eq. (21) yields the relation as

d ¼ HðoÞW (23)
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where

HðoÞ ¼

a1 a2 a3 a4 a5 a6
1 1 1 1 1 1

b1 b2 b3 b4 b5 b6
a1�1 a2�2 a3�3 a4�4 a5�5 a6�6
�1 �2 �3 �4 �5 �6

b1�1 b2�2 b3�3 b4�4 b5�5 b6�6

2
6666666664

3
7777777775

(24)

�j ¼ e�ikjL ðj ¼ 1; 2; . . . ; 6Þ (25)

By using Eq. (23), Eq. (19) can be rewritten as

ūðxÞ ¼ NU ðx;oÞd

w̄ðxÞ ¼ NW ðx;oÞd

ȳðxÞ ¼ NYðx;oÞd (26)

where NU, NW, and NY are the frequency-dependent shape functions defined by

NU ðx;oÞ ¼ UðxÞ½diagðajÞ�H
�1

NW ðx;oÞ ¼ UðxÞH�1

NYðx;oÞ ¼ UðxÞ½diagðbjÞ�H
�1 (27)

Substitution of Eq. (26) into Eq. (7) and its result into Eq. (22) gives the relation between the nodal force and
moment vector f and the nodal dof vector d as

f ¼ SðoÞd (28)

where S(o) is the frequency-dependent dynamic stiffness matrix, often called spectral element matrix, given by

SðoÞ ¼
R 0

0 R

� �
WH�1 (29)

where 0 is the zero matrix, and R and W are defined by
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(31)

where

wj ¼ ikj þ bj ðj ¼ 1; 2; . . . ; 6Þ (32)

The spectral element Eq. (28) can be assembled in an analogous way as used in the conventional finite element
method. After applying the relevant boundary conditions, a global dynamic stiffness matrix equation can be
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obtained in the form as

fg ¼ SgðoÞdg (33)

where the subscript g denotes the quantities for an assembled global ETB system.

4. Spectral element analysis

As the global dynamic stiffness matrix Sg(o) exactly relates the spectral dofs with the spectral nodal forces
and moments at a frequency o, one can use only one element to model an ETB structure of any length in the
absence of any discontinuity or irregularity in geometrical and material properties.

The natural frequencies oNAT of a global system can be computed from the condition that the determinant
of the global dynamic stiffness matrix vanishes at oNAT. That is

det SgðoNATÞ ¼ 0 (34)

To compute the roots (i.e., natural frequencies oNAT) of Eq. (34), we can use a proper root finding algorithm
together with using the Wittrick–William algorithm (Ref. [16]) not to miss any roots within a frequency range
specified during the root search.

The spectral nodal dofs can be exactly computed from Eq. (31) as

dg ¼ SgðoÞ
�1fg ¼ TgðoÞfg (35)

where Tg(o) ¼ Sg(o)
�1 is the system transfer matrix or the frequency response function. Thus, Eq. (34)

implies that the spectral nodal DOFs can be computed by convolving the system transfer matrix with
the spectral nodal forces and moments. Lastly we use the inverse FFT to compute the time history of the
response.

5. Applications

Before the application of the present spectral element model, we first evaluate its high accuracy by
comparing the natural frequencies of an ETB obtained by using the spectral element model with those
obtained by using the conventional finite element model. We have considered an ETB that was considered in
Ref. [19]. The ETB has the length of 1m and its material properties are given by

EA ¼ 20:3� 106 N; GA ¼ 0:66� 106 N; EI ¼ 11:70� 106 Nm2

C1 ¼ 0:99� 106 N; C2 ¼ 17:90� 106 Nm; C3 ¼ 0:00 Nm

rA ¼ 0:96 kg=m; rR ¼ �0:69 kg; rI ¼ 5:01 kgm

We have used the finite element model developed in the author’s previous work (Ref. [2]) and the results are
shown in Table 1 for two boundary conditions: clamped–free boundary and simply–simply supported
Table 1

Comparison of the natural frequencies computed by the present spectral element model and the finite element model

Boundary Conditions Mode Number FEM(n) SEM

n ¼ 3 n ¼ 5 n ¼ 10 n ¼ 20 n ¼ 50 n ¼ 100 n ¼ 1

Clamped–free 1st 226.9 224.9 224.0 223.8 223.6 223.6 223.6

3rd 1291 1183 1100 1079 1073 1072 1072

5th 4708 1773 1576 1519 1503 1500 1499

Simply–simply supported 1st 57.78 57.77 57.77 57.77 57.77 57.77 57.77

3rd 884.5 854.4 828.2 820.8 818.8 818.5 818.3

5th 3443 1479 1344 1308 1298 1297 1296

Note: FEM(n) denotes the finite element analysis results obtained by using n finite elements.
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boundary. It is obvious from Table 1 that the natural frequencies obtained by using the finite element model
converge to the results obtained by using the spectral element model as the number of finite elements used for
finite element analysis is increased. This confirms that the spectral element model indeed provides extremely
accurate solutions as many researchers (e.g., Ref. [3–5,11]) have already recognized the spectral element
method as an exact element method.

For the application of the present SEM model, we consider a carbon nanotube, a plane truss, and a
space lattice beam as example lattice structures. As the cross sections of the example lattice
structures considered in this study are all symmetric with respect to the plane in which they vibrate,
the example lattice structures can be considered to take the in-plane motion only without the torsional
mode about their elastic axes. In the previous studies (e.g., Ref. [2,18]), the example lattice structures
were homogenized as the equivalent continuum ETB models. Accordingly we apply the present SEM
model to the homogenized continuum ETB models to investigate the natural frequencies of example lattice
structures.

5.1. Carbon nanotubes

Fig. 3(a) shows an armchair single-walled carbon nanotube (SWCNT) together with its repeating cell. The
geometry of SWCNT is denoted by the chirality vector (n, n), where n is the integer index (Ref. [17]). The
effective structural rigidities and mass inertia properties of the armchair SWCNT (5, 5) represented by a
homogenized continuum ETB model are given in Ref. [18]:

EA ¼ 762:23 kg nm=s2; GA ¼ 674:65 kg nm=s2; EI ¼ 44:306 kg nm3=s2

C1 ¼ 0 kg nm=s2; C2 ¼ 0 kg nm=s2; C3 ¼ 0 kg nm=s2

rA ¼ 1:6217� 10�24 kg=nm; rR ¼ 0 kg; rI ¼ 9:3184� 10�26 kg nm

The present spectral element model is applied to the CNTs (5, 5) with fifty RCUs (i.e., total length is
12.29 nm) to evaluate their natural frequencies when they are subjected to the clamped–free (cantilevered)
boundary condition and the simply–simply supported boundary condition. The results are displayed in
Table 2.
Fig. 3. Example periodic lattice structures: the repeating cells of (a) armchair single-walled carbon nanotube, (b) periodic plane truss, and

(c) periodic space lattice beam.
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Table 2

Natural frequencies of the armchair single-walled carbon nanotubes (5, 5)

Boundary conditions Natural frequency (GHz)

o1 o2 o3 o4 o5

Clamped–free 19.3 119.7 329.3 440.7 630.1

Simply–simply supported 54.1 213.8 440.7 772.2 819.1

Table 3

Natural frequencies of a periodic plane truss

Boundary conditions Natural frequency (Hz)

o1 o2 o3 o4 o5

Clamped–free 0.30 1.76 4.42 7.53 10.77

Simply–simply supported 0.96 3.36 6.39 9.59 12.81

Table 4

Natural frequencies of a periodic space lattice beam

Boundary conditions Natural frequency (Hz)

o1 o2 o3 o4 o5

Clamped–free 0.66 3.80 9.52 12.97 16.44

Simply–simply supported 1.82 6.67 12.54 13.63 20.95

U. Lee, C. Lee / Journal of Sound and Vibration 319 (2009) 993–1002 1001
5.2. Periodic plane truss

Fig. 3(b) shows the repeating cell isolated from a typical plane truss with 20 repeating cells. All lattice
members within a repeating cell (i.e., one upper longitudinal bar, one lower longitudinal bar, one diagonal
bar, and two battens) are made of same material, which has the mass density 2768 kg/m3 and Young’s
modulus 71.7� 109N/m2. The lengths of the longitudinal bar, diagonal bar, and batten are 7.5, 9.0,
and 5.0m, respectively. The cross-sectional areas of the upper longitudinal bar, lower longitudinal
bar, diagonal bar, and batten are 8� 10�5, 18� 10�5m2, 4� 10�5, and 6� 10�5, respectively, and the
effective structural properties for the homogenized continuum ETB model of the periodic plane truss are given
in (Ref. [2]):

EA ¼ 20:30� 106 N; GA ¼ 0:73� 106 N; EI ¼ 11:70� 106 N m2

C1 ¼ 1:10� 106 N; C2 ¼ �17:90� 106 N m; C3 ¼ 0N m

rA ¼ 0:96 kg=m; rR ¼ �0:69 kg; rI ¼ 5:01 kg m

Table 3 shows the natural frequencies obtained by applying the present spectral element model to the periodic
plane truss with 20 repeating cells (i.e., total length is 150m) when it is subjected to clamped–free boundary
condition and the simply–simply supported boundary condition.

5.3. Periodic space lattice beam

Fig. 3(c) shows the repeating cell for a typical three-dimensional lattice beam with ten repeating cells, which
has been proposed for space applications. The length of a repeating cell unit is 7.5m and the details of the
material properties and geometric dimensions of the lattice elements within the repeating cell are given in
(Ref. [2]). The effective structural properties for the homogenized continuum ETB model of the periodic space
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lattice beam are given as (Ref. [2]):

EA ¼ 2:71� 107 N; GA ¼ 0:22� 107 N; EI ¼ 9:61� 107 N m2

C1 ¼ 0 N; C2 ¼ �1:96� 107 N m; C3 ¼ 0N m

rA ¼ 1:79 kg=m; rR ¼ �1:30 kg; rI ¼ 6:06 kg m

Similarly the present spectral element model is applied to the cantilevered plane truss with 20 repeating cells
(i.e., total length is 75m) to evaluate its natural frequencies when it is subjected to the clamped–free boundary
condition and the simply–simply supported boundary condition. The results are given in Table 4.

6. Conclusions

In this paper, we have developed a spectral element model for the extended Timoshenko beams for the
applications to some typical periodic, beam-like lattice structures which may take extension-transverse shear-
bending coupled vibrations. The spectral element model has been formulated by using the variational
approach of finite element formulation. The wave solutions analytically solved to satisfy the governing
equations of motion in the frequency-domain have been used as the frequency-dependent interpolation
functions. Lastly, the spectral element model has been applied to the homogenized continuum ETB models of
some example lattice structures such as the armchair carbon nanotube, periodic plane truss, and the periodic
space lattice beam to evaluate their natural frequencies.
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